Q.
Two points P and Q are lying on the curve y=log2(x+3) in xy plane such that OP→⋅i^=1 and OQ→⋅j^=3 , then the value of ∣∣OQ→−2OP→∣∣ is
(where, O is the origin)
2188
187
NTA AbhyasNTA Abhyas 2020Vector Algebra
Report Error
Solution:
Let P(x1,log2(x1+3)) and Q(x2,log2(x2+3)) ∵OP⋅i^=1⇒x1=1⇒P(1,2) ∵OQ⋅j^=3⇒log2(x2+3)=3⇒x2=5⇒Q(5,3) OQ−2OP∣=∣5i^+3j^−2(i^+2j^)∣ =∣3i^−j^∣=10