Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Two functions are defined as under f(x) = begincases x+1, text x le 1 [2ex] 2x+1, text 1 < x le 2 endcases and g(x) = begincases x2, text -1 le x < 2 [2ex] x+2, text 2 le x le 3 endcases then (fog)(x) equals
Q. Two functions are defined as under
f
(
x
)
=
⎩
⎨
⎧
x
+
1
,
2
x
+
1
,
x
≤
1
1
<
x
≤
2
and
g
(
x
)
=
⎩
⎨
⎧
x
2
,
x
+
2
,
−
1
≤
x
<
2
2
≤
x
≤
3
then
(
f
o
g
)
(
x
)
equals
1795
203
Relations and Functions - Part 2
Report Error
A
⎩
⎨
⎧
x
2
+
1
,
2
x
2
+
1
,
∣
x
∣
≤
1
1
<
x
≤
2
35%
B
⎩
⎨
⎧
x
2
+
1
,
2
x
2
+
1
,
∣
x
∣
≤
1
1
≤
x
<
2
37%
C
⎩
⎨
⎧
x
2
+
1
,
2
x
2
+
1
,
∣
x
∣
>
1
∣
x
∣
≥
2
8%
D
None of these
19%
Solution:
(
f
o
g
)
(
x
)
=
f
(
g
(
x
))
=
⎩
⎨
⎧
g
(
x
)
+
1
,
2
g
(
x
)
+
1
,
g
(
x
)
≤
1
1
<
g
(
x
)
≤
2
Now,
g
(
x
)
≤
1
(
i
)
x
2
≤
1
,
−
1
≤
x
<
2
⇒
∣
x
∣
≤
1
,
−
1
,
≤
x
<
2
⇒
∣
x
∣
≤
1
(
ii
)
x
+
2
≤
1
,
2
≤
x
≤
3
⇒
x
≤
−
1
,
2
≤
x
≤
3
⇒
x
=
ϕ
Now, consider
1
<
g
(
x
)
≤
2
(
iii
)
1
<
x
2
≤
2
,
−
1
≤
x
<
2
⇒
x
∈
[
−
2
,
−
1
]
∪
(
1
,
2
]
,
−
1
≤
x
<
2
⇒
1
<
x
≤
2
(
i
v
)
1
<
x
+
2
≤
2
,
2
≤
x
≤
3
⇒
−
1
<
x
≤
0
,
2
≤
x
≤
3
⇒
x
=
ϕ
So
(
f
o
g
)
(
x
)
=
f
(
g
(
x
))
=
⎩
⎨
⎧
x
2
+
1
,
2
x
2
+
1
,
∣
x
∣
≤
1
1
<
x
≤
2