Q.
Two concentric ellipses are such that the foci of each one are on the other and length of their major axes are equal. Let e and e′ be their eccentricities, then
Clearly O is the maidpoint of SS′ and HH′ ⇒ Diagonals of quadrilateral IISII 'S' bisect each other, so it is a parallelogram.
I.et II′OII=2r⇒OII=r=ae′ H lics on a2x2+b2y2=1 (supposc) ∴a2r2cos2θ+b2r2sin2θ=1 e′2cos2θ+1−e2e′2sin20=1[∵b2=a2(1−e2)] ⇒e′2cos2θ−1−e2e′2cos20=1−1−e2e′2 ⇒cos2θ=e21+e′21−e2e′21 ⇒θ=cose21+e′21−e2e′21
For θ=90∘,e2e′2e2+e′2=e2e′21⇒e2+e′2=1