Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two concentric ellipses are such that the foci of each one are on the other and length of their major axes are equal. Let $e$ and $e^{\prime}$ be their eccentricities, then

JEE AdvancedJEE Advanced 2018

Solution:

image
Clearly $O$ is the maidpoint of $S S^{\prime}$ and $H H^{\prime}$
$\Rightarrow$ Diagonals of quadrilateral IISII 'S' bisect each other, so it is a parallelogram.
I.et $I I^{\prime} O I I=2 r \Rightarrow O I I=r=a e^{\prime}$
$H$ lics on $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (supposc)
$\therefore \frac{r^2 \cos ^2 \theta}{a^2}+\frac{r^2 \sin ^2 \theta}{b^2}=1 $
$ e^{\prime 2} \cos ^2 \theta+\frac{e^{\prime 2} \sin ^2 0}{1-e^2}=1 \left[\because b^2=a^2\left(1-e^2\right)\right] $
$\Rightarrow e^{\prime 2} \cos ^2 \theta-\frac{e^{\prime 2} \cos ^2 0}{1-e^2}=1-\frac{e^{\prime 2}}{1-e^2} $
$\Rightarrow \cos ^2 \theta=\frac{1}{e^2}+\frac{1}{e^{\prime 2}}-\frac{1}{e^2 e^{\prime 2}} $
$\Rightarrow \theta=\cos \sqrt{\frac{1}{e^2}+\frac{1}{e^{\prime 2}}-\frac{1}{e^2 e^{\prime 2}}}$
For $\theta=90^{\circ}, \frac{e^2+e^{\prime 2}}{e^2 e^{\prime 2}}=\frac{1}{e^2 e^{\prime 2}} \Rightarrow e^2+e^{\prime 2}=1$