We know I∝a2 or a∝I ∴a2a1=(I2I1)
So, IminImax=(a1−a2)2(a1+a2)2 =(a2−a1)2(a1+a2)=(1−β)2(1+β)2
Applying componendo and dividendo Imax−IminImax+Imin=(1+β)2−(1−β)2(1+β)2+(1−β)2
or =4β2+2β
or Imax+IminImax−Imin=1+β2β