If (v−1),v,(v+1) be the frequencies of the three waves and a be the amplitude of each then y1=asin2π(v−1)t,y2=asin2πvt
and y3=asin2π(v+1)t
Resultant displacement due to all three waves is y=y1+y2+y3 =asin2πvt+a[sin2π(v−1)t +sin2π(v+1)t] =asin2πvt+a[2sin2πvtcos2πt] =a[2cos2πt+1]sin2πvt =a′sin2π vt with d=a[1+2cos2πt]
So, I∝(d)2∝a2(1+2cos2πt)2
For I to be max. or min. dtdI=0⇒dtd(1+2cos2πt)2=0
ie, 2(1+2cosπt)(2sin2πt)×2π=0 sin2πt=0 or 1+2cos2πt=0
So, if 1+2cos2πt=0 ⇒2πt=2πn±32π
with n=0,1,2,… t=31,32,34,35,… and for these value of t cos2πt=−(21),I=0,
ie, I is minimum and if sin2πt=0 2πt=nπ,n=0,1,2,.. ⇒t=0,21,1,23,2… I is therefore 9a2,a2,9a2,a2
ie, intensity is maximum (with two different values) ie, number of beats per sec is two.