Let A, B and C be three points whose coordinates are (2,−1,3), (3,−5,1) and (−1,11,9) respectively, then OA=2i^−j^+3k^, OB=3i^−5j^+k^
and
OC=−i^−11j^+9k^ ∴AB=OB−OA=(3i^−5j^+k^)−(2i^−j^+3k^) =i^−4j^−2k^ AC=OC−OA=(−i^−11j^+9k^)−(2i^−j^+3k^) =−3i^+12j^+6k^ ⇒AC=−3AB
Thus, the vector AB and AC are parallel having the same initial point A.
Hence, the points A, B, C are collinear.