Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Three points (2, -1,3), (3, -5,1) and (-1, 11, 9) are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Three points $(2, -1,3)$, $(3, -5,1)$ and $(-1, 11, 9)$ are
Vector Algebra
A
Non-collinear
23%
B
Non-coplanar
10%
C
Collinear
61%
D
None of these
6%
Solution:
Let $A$, $B$ and $C$ be three points whose coordinates are $(2, -1,3)$, $(3, -5,1)$ and $(-1,11,9)$ respectively, then
$\overrightarrow{OA} = 2\hat{i} - \hat{j} +3\hat{k}$,
$ \overrightarrow{OB} = 3\hat{i} - 5\hat{j} +\hat{k}$
and $\overrightarrow{OC} = -\hat{i} -11 \hat{j} +9\hat{k}$
$\therefore \overrightarrow{AB}= \overrightarrow{OB} - \overrightarrow{OA} = \left( 3\hat{i} - 5\hat{j} +\hat{k}\right) - \left( 2\hat{i} - \hat{j} +3\hat{k}\right)$
$= \hat{i} - 4\hat{j} - 2\hat{k}$
$ \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \left( -\hat{i} -11 \hat{j} +9\hat{k}\right) - \left( 2\hat{i} - \hat{j} +3\hat{k}\right)$
$= - 3\hat{i} +12 \hat{j} +6\hat{k}$
$\Rightarrow \overrightarrow{AC} =-3 \overrightarrow{AB}$
Thus, the vector $\overrightarrow{AB}$ and $\overrightarrow{AC}$ are parallel having the same initial point $A$.
Hence, the points $A$, $B$, $C$ are collinear.