Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Three numbers x, y and z are in arithmetic progression. If x + y + z = - 3 and xyz= 8, then x2 + y2 + z2 is equal to
Q. Three numbers
x
,
y
and
z
are in arithmetic progression. If
x
+
y
+
z
=
−
3
and
x
yz
=
8
, then
x
2
+
y
2
+
z
2
is equal to
2916
163
KEAM
KEAM 2017
Sequences and Series
Report Error
A
9
7%
B
10
10%
C
21
69%
D
20
7%
E
1
7%
Solution:
Let
x
=
a
−
r
,
y
=
a
,
z
=
a
+
r
Now, we have
x
+
y
+
z
=
−
3
∴
a
−
r
+
a
+
a
+
r
=
−
3
⇒
3
a
=
−
3
⇒
a
=
−
1
Again,
x
yz
=
8
∴
(
a
−
r
)
(
a
)
(
a
+
r
)
=
8
⇒
a
(
a
2
−
r
2
)
=
8
⇒
−
1
(
1
−
r
2
)
=
8
⇒
−
1
+
r
2
=
8
⇒
r
2
=
9
⇒
r
=
±
3
∴
x
,
y
,
z
are
−
4
,
−
1
,
2
or
2
,
−
1
,
−
4
∴
x
2
+
y
2
+
z
2
=
(
−
4
)
2
+
(
−
1
)
2
+
(
2
)
2
=
16
+
1
+
4
=
21