Let VAB be a given cone of height h, semi-vertical angle α and let x be the radius of the base of the cylinder A′B′DC which is inscribed in the cone VAB. Then, OO′= Height of the cylinder ⇒OO′−VO−VO′=h−xcotα…(i)
Let V be the volume of the cylinder. Then, V=πx2(h−xcotα)…(ii) ⇒dxdV​=2πxh−3πx2cotα
For maximum or minimum V, we must have dxdV​=0 ⇒2πxh−3πx2cotα=0
⇒x=32h​tanα[∵xî€ =0]
Now, dx2d2V​=2πh−6πxcotα
When x=32h​tanα, we have dx2d2V​=π[2h−4h]=2πh<0.
Hence, V is maximum when
x=32h​tanα.
The maximum volume of the cylinder is given by V=π(32h​tanα)2(h−32h​) [From (ii)] ⇒V=274​πh3tan2α.