Let the vertices of a triangle be A(6,0),B(0,6) and C(6,6)
Now,AB=62+62=62 BC=62+0=6
and CA=0+62=6
Also,AB2=BC2+CA2
Therefore, ΔABC is right angled at C. So, mid point of AB is the circumcentre of △ABC. ∴ Coordinate of circumcentre are (3,3).
Coordinate of centroid are, G(36+0+6,30+6+6),ie,(4,4) ∴Required distance =(4−3)2+(4−3)2=2