a(x) and b(x) are collinear if and only if cosx=x
Now, let f(x)=x−cosx ∴f′(x)=1+sinx⇒f′(x)≥0 ⇒f(x) is an increasing function and hence f(x)=0 is true for a unique value of x.
As, f(6π)=6π−23<0
and f(3π)=3π−21>0
So, using intermediate value theorem,
Thus, cosx=x, for a unique value of x,x∈(6π,3π)