Since, c is perpendicular to the vectors a=(2,−3,1) and b=(1,−2,3), therefore c is parallel to a×b. ∴c=λ(a×b) ⇒∣∣i^21j^−3−2k^13∣∣ ⇒c=λ(−7i^−5j^−k^)
Also, it is given that c.(i^+2j^−7k^)=10 ⇒λ(−7i^−5j^−k^).(i^+2j^−7k^)=10 ⇒λ(−7−10+7)=10 ⇒−10λ=10 ⇒λ=−1
Hence, c=(−1)(−7i^−5j^−k^) =(7i^+5j^+k^)