Let a=4i−j+3k,b=−2i+j−2k
and c=xi+yj+zk
Given, a⋅c=0
i.e., 4x−y+3z=0…(i)
and b⋅c=0
i.e., −2x+y−2z=0…(ii)
Also, ∣c∣=9
i.e., x2+y2+z2=81…(iii)
Now, from Eqs. (i) and (ii), we get 2x+z=0 ⇒z=−2x
On putting this value in Eq. (iii), we get x2+y2+4x2=81 ⇒5x2+y2=81…(iv)
On multiplying Eq. (i) by 2 and Eq. (ii) by 3 and then adding, we get 8x−2y+6z=0 −6x+3y−6z=0
______________ 2x+y=0 ⇒y=−2x
On putting this value in Eq. (iv), we get 5x2+4x2=81 ⇒9x2=81 ⇒x2=9 ⇒x=±3 ∴y=∓6 and z=∓6 ∴ Required vector, c=xi+yj+zk =±3i∓6j∓6k =3i−6j−6k
or =−3i+6j+6k