Variance =10012+32+52+…..+(199)2−(1001+3+5+…..+199)2
Sum =n=1∑n(2n−1)2=4Σn2−4Σn+n
Sum =64n(n+1)(2n+1)−24n(n+1)+n
Put n=100 =64×100×101×201−2×100×101+100 =100(32×101×201−2×101+1)=100(2×6767−202+1) =100(13534−201)=100×13333=1333300
Then, Variance =1001333300−(100)2=13333−10000=3333