Let the observations be x1,x2,....,x20 and xˉ be their mean. Given that, variance = 5 and n = 20. We know that,
Variance (σ)2=n1i=1∑20(xi−xˉ)
i.e. 5=201i=1∑20(xi−xˉ)2 or i=1∑20(xi−xˉ)2=100...(i)
If each observation is multiplied by 2 and the new resulting observations are yi, then yi=2xi i.e., xi=21yi
Therefore, yˉ=n1i=1∑20yi=201i=1∑202xi=2.201i=1∑20xi
i.e., yˉ=2xˉ or xˉ21yˉ
On substituting the values of xi and xˉ in eq. (i), we get i=1∑20(21yi−21yˉ)2=100 i.e. i=1∑20(yi−yˉ)2=400
Thus, the variance of new observations =201×400=20=22×5