Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The values of θ lying between θ=0 and θ=π / 2 and satisfying the equation Δ=| 1+ cos 2 θ sin 2 θ 4 sin 4 θ cos 2 θ 1+ sin 2 θ 4 sin 4 θ cos 2 θ sin 2 θ 1+4 sin 4 θ |=0 are given by
Q. The values of
θ
lying between
θ
=
0
and
θ
=
π
/2
and satisfying the equation
Δ
=
∣
∣
1
+
cos
2
θ
cos
2
θ
cos
2
θ
sin
2
θ
1
+
sin
2
θ
sin
2
θ
4
sin
4
θ
4
sin
4
θ
1
+
4
sin
4
θ
∣
∣
=
0
are given by
144
113
Determinants
Report Error
A
π
/24
,
5
π
/24
B
7
π
/24
,
11
π
/24
C
5
π
/24
,
7
π
/24
D
11
π
/24
,
π
/24
Solution:
C
3
→
C
3
+
C
1
+
C
2
, gives
Δ
=
(
2
+
4
sin
4
θ
)
∣
∣
1
+
cos
2
θ
cos
2
θ
cos
2
θ
sin
2
θ
1
+
sin
2
θ
sin
2
θ
1
1
1
∣
∣
Applying
R
3
→
R
3
−
R
2
,
R
2
→
R
2
−
R
1
, we get
Δ
=
2
(
1
+
2
sin
4
θ
)
∣
∣
1
+
cos
2
θ
−
1
0
sin
2
θ
1
−
1
1
0
0
∣
∣
=
2
(
1
+
2
sin
4
θ
)
Δ
=
0
⇒
sin
4
θ
=
−
1/2
Now,
0
≤
θ
≤
2
π
⇒
0
≤
4
θ
≤
2
π
∴
4
θ
=
6
7
π
,
6
11
π
⇒
θ
=
24
7
π
,
24
11
π