Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The values of parameter such that the line ( log 2(1+5 a-a2)) x-5 y-(a2-5)=0 is a normal to the curve x y=1, may lie in the interval
Q. The values of parameter such that the line
(
lo
g
2
(
1
+
5
a
−
a
2
)
)
x
−
5
y
−
(
a
2
−
5
)
=
0
is a normal to the curve
x
y
=
1
, may lie in the interval
197
121
Application of Derivatives
Report Error
A
(
−
∞
,
0
)
$
B
(5, \infty)$
C
(
0
,
5
)
D
(
−
∞
,
0
)
∪
(
5
,
∞
)
Solution:
x
y
=
1
⇒
y
=
x
1
⇒
d
x
d
y
=
−
x
2
1
Slope of normal
=
x
2
>
0
,
(
x
=
0
)
Slope of given line
5
l
o
g
2
(
1
+
5
a
−
a
2
)
>
0
1
+
5
a
−
a
2
>
1
a
2
−
5
a
<
0
a
∈
(
0
,
5
)
.