Q.
The values of α and β for which the quadratic equation x2+2x+2+e−2α−cosβ=0 has a real solution, is
128
103
Complex Numbers and Quadratic Equations
Report Error
Solution:
As the equation
x2+2x+2+e−2a−cosβ=0 has real roots, so discriminant ≥0
⇒4−4(2+e−2a−cosβ)≥0
⇒1−2−e−2α+cosβ≥0
⇒cosβ≥1+e2a, which is not possible. So no real value of α,β is possible.Â