Q.
The value(s) of x satisfying the equation (sin)−1(1−x)−2(sin)−1x=2π is/are
2288
184
NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions
Report Error
Solution:
We have, sin−1(1−x)−2sin−1x=2π ⇒sin−1(1−x)=2π+2sin−1x ⇒1−x=sin(2π+2sin−1x) ⇒1−x=cos(2sin−1x) ⇒1−x=cos{cos−1(1−2x2)}[∵2sin−1x=cos−1(1−2x2)] ⇒1−x=(1−2x2) ⇒x=2x2⇒x(2x−1)=0⇒x=0,21
For, x=21, we have LHS=sin−1(1−x)−2sin−1x =sin−121−2sin−121=−sin−121=6−π=R.H.S.
So, x=21 is not a root of the given equation. Clearly, x=0 satisfies the equation