Q.
The value of ∣z∣2+∣z−3∣2+∣z−i∣2 is minimum when z equals
2455
247
WBJEEWBJEE 2014Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=x+iy ∴∣z∣2+∣z−3∣2+∣z−i∣2 =∣x+iy∣2+∣(x−3)+iy∣2+∣x+i(y−1)∣2 =x2+y2+(x−3)2+y2+x2+(y−1)2 =x2+y2+x2−6x+9+y2+x2+y2+1−2y =3x2+3y2−6x−2y+10 =3(x2−2x+1)+3(y2−32y+91)+10−3−31 =3(x−1)2+3(y−31)2+320
It is minimum, when x−1=0 and y−31=0 ∴x=1 and y=31 ∴z=1+31i