Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of x for which the fourth term in the expansion of (5(2/5) (log)5 √4x + 44 + (1/5(log)5 â¡ √[3]2x - 1 + 7))8 is 336 can be equal to
Q. The value of
x
for which the fourth term in the expansion of
(
5
5
2
(
l
o
g
)
5
4
x
+
44
+
5
(
l
o
g
)
5
3
2
x
−
1
+
7
1
)
8
is
336
can be equal to
3218
240
NTA Abhyas
NTA Abhyas 2020
Binomial Theorem
Report Error
A
2
1
5%
B
1
66%
C
2
12%
D
3
17%
Solution:
T
4
=
(
_
8
C
)
3
(
5
5
1
(
l
o
g
)
5
(
4
x
+
44
)
)
5
(
5
3
1
(
l
o
g
)
5
(
2
x
−
1
+
7
)
1
)
3
=
(
_
8
C
)
3
(
5
(
l
o
g
)
5
(
4
x
+
44
)
)
(
5
(
l
o
g
)
5
(
2
x
−
1
+
7
)
)
−
1
=
(
_
8
C
)
3
×
(
4
x
+
44
)
×
(
2
x
−
1
+
7
)
−
1
Given,
T
4
=
336
⇒
(
4
x
+
44
)
(
2
x
−
1
+
7
)
−
1
=
6
⇒
4
x
+
44
=
3
⋅
2
x
+
42
⇒
(
2
x
)
2
−
3
⋅
2
x
+
2
=
0
⇒
2
x
=
1
,
2
⇒
x
=
0
or
1