Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of undersetx arrow π l i m(s i n (2 π c o s2 x)/t a n (π s e c2 x)) is equal to
Q. The value of
x
→
π
l
im
t
an
(
π
se
c
2
x
)
s
in
(
2
π
co
s
2
x
)
is equal to
1835
220
NTA Abhyas
NTA Abhyas 2020
Limits and Derivatives
Report Error
A
1
17%
B
2
36%
C
−
2
33%
D
0
14%
Solution:
x
→
π
l
im
t
an
{
π
(
1
+
t
a
n
2
x
)
}
s
in
{
2
π
(
1
−
s
i
n
2
x
)
}
=
x
→
π
l
im
t
an
{
π
+
π
t
a
n
2
x
}
s
in
{
2
π
−
2
π
s
i
n
2
x
}
=
x
→
π
l
im
t
an
{
π
t
a
n
2
x
}
−
s
in
{
2
π
s
i
n
2
x
}
=
x
→
π
l
im
{
2
π
(
s
in
)
2
x
}
−
s
in
{
2
π
(
s
in
)
2
x
}
×
π
(
t
an
)
2
x
2
π
(
s
in
)
2
x
×
t
an
(
π
(
t
an
)
2
x
)
π
(
t
an
)
2
x
=
−
1
×
2
×
1
=
−
2