Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of undersetx arrow 0+ textLim (xx+( tan x) operatornamecosec x+( operatornamecosec x) tan x) is equal to
Q. The value of
x
→
0
+
Lim
(
x
x
+
(
tan
x
)
cosec
x
+
(
cosec
x
)
t
a
n
x
)
is equal to
113
117
Continuity and Differentiability
Report Error
A
1
B
2
C
2
+
e
1
D
1
+
e
1
Solution:
Let
x
→
0
+
Lim
(
(
x
x
+
(
tan
x
)
cosec
x
+
(
cosec
x
)
)
t
a
n
x
)
=
l
1
+
l
2
+
l
3
, where
l
1
=
x
→
0
+
Lim
x
x
(
0
∘
)
⇒
ln
l
1
=
x
→
0
+
Lim
x
⋅
ln
x
(
0
×
∞
)
=
x
→
0
+
Lim
x
1
l
n
x
(
∞
∞
)
=
x
→
0
+
Lim
x
2
−
1
x
1
=
0
⇒
l
1
=
1
.
Now,
l
2
=
x
→
0
+
Lim
(
tan
x
)
cosec
x
=
0
(
0
∞
)
Also,
l
3
=
x
→
0
+
Lim
(
cosec
x
)
t
a
n
x
(
∞
0
)
⇒
ln
l
3
=
x
→
0
+
Lim
(
tan
x
)
⋅
ln
(
cosec
x
)
(
0
×
∞
)
=
x
→
0
+
Lim
c
o
t
x
l
n
(
cosec
x
)
(
∞
∞
)
=
x
→
0
+
Lim
−
cosec
2
x
cosec
x
1
(
−
cosec
x
⋅
c
o
t
x
)
=
x
→
0
+
Lim
(
t
a
n
x
s
i
n
2
x
)
=
0
→
l
3
=
1
Hence,
(
l
1
+
l
2
+
l
3
)
=
1
+
0
+
1
=
2
.