Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of undersetx arrow 0 textLim ( ln ( sec (e x) sec (e2 x) ldots ldots . sec (e50 x))/e2-e2 cos x) is equal to
Q. The value of
x
→
0
Lim
e
2
−
e
2
c
o
s
x
l
n
(
s
e
c
(
e
x
)
s
e
c
(
e
2
x
)
……
.
s
e
c
(
e
50
x
)
)
is equal to
347
107
Continuity and Differentiability
Report Error
A
(
e
2
−
1
)
e
100
−
1
B
2
(
e
2
−
1
)
e
100
−
1
C
e
2
−
1
2
(
e
50
−
1
)
D
2
(
e
2
−
1
)
e
2
(
e
100
−
1
)
Solution:
x
→
0
Lim
e
2
c
o
s
x
2
−
2
c
o
s
x
(
e
2
−
2
c
o
s
x
−
1
)
⋅
x
2
2
(
1
−
c
o
s
x
)
⋅
x
2
l
n
(
s
e
c
(
e
x
)
s
e
c
(
e
2
x
)
⋅
s
e
c
(
e
3
x
)
……
⋅
s
e
c
(
e
50
x
)
)
=
x
→
0
Lim
e
2
x
2
l
n
(
s
e
c
(
e
x
)
s
e
c
(
e
2
x
)
……
s
e
c
(
e
50
x
)
)
=
x
→
0
Lim
e
2
x
2
l
n
(
1
+
s
e
c
(
e
x
)
s
e
c
(
e
2
x
)
……
s
e
c
(
e
50
x
)
−
1
)
=
x
→
0
Lim
e
2
x
2
s
e
c
(
e
x
)
s
e
c
(
e
2
x
)
⋅
s
e
c
(
e
3
x
)
……
⋅
s
e
c
(
e
50
x
)
−
1
Apply L'hospital Rule, get
L
=
2
e
2
e
2
+
e
4
+
e
6
+
……
+
e
100
=
2
e
2
(
e
2
−
1
)
e
2
(
(
e
2
)
50
−
1
)
=
2
(
e
2
−
1
)
e
100
−
1