Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of θ lying between -(π/4) (π/2) and 0 ≤ A ≤ (π/2) and satisfying the equation |1+ sin 2 A cos 2 A 2 sin 4 θ sin 2 A 1+ cos 2 A 2 sin 4 θ sin 2 A cos 2 A 1+2 sin 4 θ|=0 are -
Q. The value of
θ
lying between
−
4
π
&
2
π
and
0
≤
A
≤
2
π
and satisfying the equation
∣
∣
1
+
sin
2
A
sin
2
A
sin
2
A
cos
2
A
1
+
cos
2
A
cos
2
A
2
sin
4
θ
2
sin
4
θ
1
+
2
sin
4
θ
∣
∣
=
0
are -
716
158
Determinants
Report Error
A
A
=
4
π
,
θ
=
−
8
π
58%
B
A
=
8
3
π
=
θ
67%
C
A
=
5
π
,
θ
=
−
8
π
0%
D
A
=
6
π
,
θ
=
8
3
π
33%
Solution:
∣
∣
1
+
sin
2
A
sin
2
A
sin
2
A
cos
2
A
1
+
cos
2
A
cos
2
A
2
sin
4
θ
2
sin
4
θ
1
+
2
sin
4
θ
∣
∣
=
0
C
1
→
C
1
+
C
2
⇒
∣
∣
2
2
1
cos
2
A
1
+
cos
2
A
cos
2
A
2
sin
4
θ
2
sin
4
θ
1
+
2
sin
4
θ
∣
∣
=
0
R
1
→
R
1
−
R
2
⇒
∣
∣
0
2
1
−
1
1
+
cos
2
A
cos
2
A
0
2
sin
4
θ
1
+
2
sin
4
θ
∣
∣
=
0
⇒
2
(
1
+
2
sin
4
θ
)
−
2
sin
4
θ
=
0
⇒
1
+
sin
4
θ
=
0
sin
4
θ
=
−
1
4
θ
=
−
2
π
or
4
θ
=
2
3
π
θ
=
−
8
π
or
θ
=
8
3
π
&
A
∈
R