Q.
The value of θ for which the system of equations
((sin3θ)x−2y+3z=0,(cos2θ)x+8y−7z=0 and 2x+14y−11z=0 has a non-trivial solution, is (here, n∈Z )
1890
181
NTA AbhyasNTA Abhyas 2020Matrices
Report Error
Solution:
The system of equations has a non-trivial solution if and only if ∣∣sin3θcos2θ2−28143−7−11∣∣=0
Applying R2→R2+4R1,R3→R3+7R1 , we get, ∣∣sin3θcos2θ+4sin3θ2+7sin3θ−2003510∣∣=0
Expanding along C2 , we get, 2(cos2θ+4sin3θ)−(2+7sin3θ)=0 ⇒2−2cos2θ−sin3θ=0 ⇒4(sin)2θ−(3sinθ−4(sin)3θ)=0 ⇒sinθ(4(sin)2θ+4sinθ−3)=0 ⇒sinθ(2sinθ−1)(2sinθ+3)=0 ⇒sinθ=0 or sinθ=1/2 .
[ sinθ=−3/2 is not possible] ∴ For, θ=nπ the system of equations has a non-trivial solution.