Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of The value of ∫1 limits0(log(1+x)/1+x2)dx is
Q. The value of The value of
0
∫
1
1
+
x
2
l
o
g
(
1
+
x
)
d
x
is
1485
168
KCET
KCET 2020
Integrals
Report Error
A
2
π
l
o
g
2
7%
B
4
π
l
o
g
2
37%
C
2
1
30%
D
8
π
l
o
g
2
26%
Solution:
I
=
∫
0
1
1
+
x
2
l
o
g
(
1
+
x
)
d
x
Let
x
=
tan
θ
⇒
d
x
=
sec
2
θ
d
θ
I
=
∫
0
4
π
lo
g
(
1
+
tan
θ
)
d
θ
⇒
I
=
∫
0
4
π
lo
g
(
1
+
tan
(
4
π
−
θ
)
)
d
θ
=
∫
0
4
π
lo
g
(
1
+
1
+
t
a
n
θ
1
−
t
a
n
θ
)
d
θ
⇒
I
=
∫
0
4
π
lo
g
(
1
+
t
a
n
θ
2
)
d
θ
=
∫
0
4
π
lo
g
2
d
θ
−
∫
0
4
π
lo
g
(
1
+
tan
θ
)
d
θ
⇒
2
I
=
4
π
lo
g
2
⇒
I
=
8
π
lo
g
2