Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the sum of the series 3n C0-8n C1+ 13n C2-18n C3+ ldots upto (n+1) terms is
Q. The value of the sum of the series
3
n
C
0
−
8
n
C
1
+
1
3
n
C
2
−
1
8
n
C
3
+
…
upto
(
n
+
1
)
terms is
2224
228
Binomial Theorem
Report Error
A
0
B
3
n
C
5
n
D
none of these
Solution:
Let
S
denotes the sum of the series. General term of the series is given by,
T
r
=
(
−
1
)
r
(
3
+
5
r
)
n
C
r
,
where
r
=
0
,
1
,
2
,
…
,
n
∴
S
=
r
=
0
∑
n
(
−
1
)
r
(
3
+
5
r
)
n
C
r
⇒
S
=
3
r
=
0
∑
n
(
−
1
)
r
n
C
r
+
5
r
=
0
∑
n
(
−
1
)
r
r
n
C
r
⇒
S
=
3
(
C
0
−
C
1
+
C
2
−
C
3
+
C
4
…
)
+
5
(
−
C
1
+
2
C
2
−
3
C
3
+
4
C
4
…
)
∴
S
=
0
+
0
=
0