I=∫1−cos2θsinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθ ⇒I=∫2sin2θsinθ.2sinθcosθ⋅sin2θ(sin4θ+sin2θ+1)(2sin4θ+3sin2θ+6)1/2dθ =∫sin2θ⋅cosθ(sin4θ+sin2θ+1)(2sin4θ+3sin2θ+6)1/2dθ
Let sinθ=t ⇒cosθdθ=dt ∴I=∫t2(t4+t2+1)(2t4+3t2+6)1/2dt =∫(t5+t3+t)t(2t4+3t2+6)1/2dt =∫(t5+t3+t)(t2)1/2(2t4+3t2+6)1/2dt =∫(t5+t3+t)(2t6+3t4+6t2)1/2dt
Let 2t6+3t4+6t2=u2 ⇒12(t5+t3+t)dt=2udu ∴I=∫(u2)1/2⋅122udu =∫6u2du=18u3+C =18(2t6+3t4+6t2)3/2+C
when t=sinθ
and t2=1−cos2θ