Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limitsπ/6π/2((1+ sin 2x+ cos 2x / sin x + cos x))dx is equal to
Q. The value of the integral
π
/6
∫
π
/2
(
s
i
n
x
+
c
o
s
x
1
+
s
i
n
2
x
+
c
o
s
2
x
)
d
x
is equal to
2271
237
WBJEE
WBJEE 2012
Integrals
Report Error
A
16
0%
B
8
0%
C
4
100%
D
1
0%
Solution:
Let
I
=
π
/6
∫
π
/2
(
s
i
n
x
+
c
o
s
x
1
+
s
i
n
2
x
+
c
o
s
2
x
)
d
x
=
π
/6
∫
π
/2
(
(
s
i
n
x
+
c
o
s
x
)
1
+
2
s
i
n
x
c
o
s
x
+
2
c
o
s
2
x
−
1
)
d
x
=
π
/6
∫
π
/2
(
s
i
n
x
+
c
o
s
x
)
2
c
o
s
x
(
s
i
n
x
+
c
o
s
x
)
d
x
=
π
/6
∫
π
/2
2
cos
x
d
x
=
2
[
sin
x
]
π
/6
π
/2
=
2
(
sin
2
π
−
sin
6
π
)
=
2
(
1
−
2
1
)
=
2
×
2
1
=
1