Let I=−π/4∫π/4log(secθ−tanθ)dθ
Again, let f(θ)=log(secθ−tanθ) ∴f(−θ)=log[sec(−θ)−tan(−θ)] =log[(secθ+tanθ)×secθ−tanθsecθ−tanθ] =log[secθ−tanθsec2θ−tan2θ]=log[secθ−tanθ1] =log1−log(secθ−tanθ) =0−log(secθ−tanθ) ⇒f(−θ)=−f(θ)
Hence, f(θ) is an odd function. ∴I=0