Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits-22 (|x3+x|/(ex|x|+1)) d x is equal to:
Q. The value of the integral
−
2
∫
2
(
e
x
∣
x
∣
+
1
)
∣
x
3
+
x
∣
d
x
is equal to:
1268
183
JEE Main
JEE Main 2022
Integrals
Report Error
A
5
e
2
B
3
e
−
2
C
4
D
6
Solution:
f
(
x
)
=
(
e
x
∣
x
∣
+
1
)
∣
x
3
+
x
∣
d
x
−
2
∫
2
f
(
x
)
d
x
=
∫
0
2
(
f
(
x
)
+
f
(
−
x
))
d
x
=
0
∫
2
(
(
e
x
∣
x
∣
+
1
)
∣
x
3
+
x
∣
+
(
e
−
x
∣
−
x
∣
+
1
)
∣
−
x
3
−
x
∣
)
d
x
=
0
∫
2
(
(
e
x
∣
x
∣
+
1
)
∣
x
3
+
x
∣
+
(
e
−
x
∣
x
∣
+
1
)
∣
x
3
+
x
∣
)
d
x
=
0
∫
2
(
(
e
x
2
+
1
)
x
3
+
x
+
(
e
−
x
2
+
1
)
x
3
+
x
)
d
x
I
=
0
∫
2
(
1
+
e
x
2
x
3
+
x
+
1
+
e
x
2
e
x
2
(
x
3
+
x
)
)
d
x
=
0
∫
2
(
x
3
+
x
)
d
x
=
[
4
x
4
+
2
x
2
]
0
2
=
4
+
2
=
6