Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits0(π/2) log (tan x)dx=
Q. The value of the integral
0
∫
2
π
l
o
g
(
t
an
x
)
d
x
=
6545
217
VITEEE
VITEEE 2006
Report Error
A
0
B
1
C
2
π
D
4
π
Solution:
Let I =
0
∫
2
π
log (tan x)dx ...(1)
Then, I =
0
∫
2
π
l
o
g
[
t
an
(
2
π
−
x
)
]
d
x
[
∵
0
∫
a
f
(
x
)
d
x
=
0
∫
a
f
(
a
−
x
)
d
x
]
⇒
I
=
0
∫
2
π
l
o
g
(
co
t
x
)
d
x
⇒
I
=
0
∫
2
π
l
o
g
(
t
an
x
1
)
d
x
⇒
I
=
0
∫
2
π
l
o
g
(
t
an
x
)
−
1
d
x
=
−
0
∫
2
π
l
o
g
(
t
an
x
)
d
x
⇒
I = -I
⇒
2I = 0
⇒
I
=
0
[Using eq. (1)]