We have, I=1/2014∫2014xtan−1xdx…(i)
Let x=t1 ⇒dx=t2−1dt
Now, I=2014∫1/20141/ttan−1(1/t)(t2−1dt) =1/2014∫2014tcot−1tdt =1/2014∫2014xcot−1xdx…(ii)
On adding Eqs. (i) and (ii), we get 2I=1/2014∫2014xπ/2dx=2π(logx)1/20142014 =2π(log2014−log1/2014) ∴I=4π(log2014−log20141) =4π(log2014+log2014) =4π(2log2014)=2πlog2014