Q.
The value of the integral I=∫3131+x2+x3+x5dx is equal to
1758
225
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
Given integral is I=∫313(1+x2)(1+x3)dx
Let, tan−1x=θ ⇒dx=sec2θdθ ∴I=∫6π3π1+tan3θdθ =∫6π3πsin3θ+cos3θcos3θdθ
Applying (a+b−x) property and adding, we get, 2I=∫6π3πsin3θ+cos3θcos3θ+sin3θdθ 2I=[θ]6π3π ⇒2I=6π ⇒I=12π