Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral displaystyle ∫ e3 s i n- 1 x((1/√1 - x2) + e3 c o s- 1 x)dx is equal to (where, c is an arbitrary constant)
Q. The value of the integral
∫
e
3
s
i
n
−
1
x
(
1
−
x
2
1
+
e
3
co
s
−
1
x
)
d
x
is equal to
(where,
c
is an arbitrary constant)
2388
230
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
3
e
3
s
i
n
−
1
x
+
x
e
2
3
π
+
c
26%
B
e
s
i
n
−
1
x
+
e
π
/2
+
c
42%
C
3
e
3
s
i
n
−
1
x
+
x
e
2
3
π
+
c
23%
D
e
2
π
+
e
x
(
2
π
)
+
c
10%
Solution:
∫
1
−
x
2
e
3
s
i
n
−
1
x
d
x
+
∫
e
3
(
s
i
n
−
1
x
+
co
s
−
1
x
)
d
x
=
∫
e
3
t
d
t
+
∫
e
2
3
π
d
x
(
P
u
t
(
s
in
)
−
1
x
=
t
)
=
3
e
3
t
+
e
2
3
π
⋅
x
+
c