Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $\displaystyle \int e^{3 s i n^{- 1} x}\left(\frac{1}{\sqrt{1 - x^{2}}} + e^{3 c o s^{- 1} x}\right)dx$ is equal to

(where, $c$ is an arbitrary constant)

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

$\displaystyle \int \frac{e^{3 s i n^{- 1} x}}{\sqrt{1 - x^{2}}}dx+$ $\displaystyle \int e^{3 \left(s i n^{- 1} x + c o s^{- 1} x\right)}dx$
$=\displaystyle \int e^{3 t} d t +\displaystyle \int e^{\frac{3 \pi }{2}}dx$ $\left(Put \left(sin\right)^{- 1} x = t\right)$
$=\frac{e^{3 t}}{3}+e^{\frac{3 \pi }{2}}\cdot x+c$