Q.
The value of the integral ∫(x−2)87(x+3)89dx is equal to (where, C is the constant of integration)
2080
213
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
Let I=∫(x−2)7/8(x+3)9/8dx
On substituting x+3x−2=t, we get (x+3)2(x+3)×1−(x−2)×1dx=dt <br/>⇒(x+3)2dx=5dt<br/> <br/>∴I=∫(x−2)7/8(x+3)7/8(x+3)9/8(x+3)7/8dx<br/> <br/>=∫(x−2x+3)7/8(x+3)2dx<br/> <br/><br/>=∫(t1)7/85dt=51∫t−7/8dt<br/>=51[1/8t1/8]+C<br/>=58(x+3x−2)1/8+C<br/><br/>