Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral Î= displaystyle ∫ (d x/√1 + s i n x), ∀ x∈ [0 , (π /2)] is equal to k ln ( tan ((π/4)+(x/8)))+c, then the value of k √2 is equal to (where, c is the constant of integration)
Q. The value of the integral
I
=
∫
1
+
s
in
x
d
x
,
∀
x
∈
[
0
,
2
π
]
is equal to
k
ln
(
tan
(
4
π
+
8
x
)
)
+
c
,
then the value of
k
2
is equal to (where,
c
is the constant of integration)
1396
209
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
2
15%
B
2
1
21%
C
2
28%
D
2
2
35%
Solution:
As,
1
+
sin
x
=
sin
2
2
x
+
cos
2
2
x
+
2
sin
2
x
cos
2
x
,
=
(
sin
2
x
+
cos
2
x
)
2
I
=
∫
s
i
n
2
x
+
c
o
s
2
x
d
x
=
2
1
∫
s
i
n
(
4
x
+
2
x
)
d
x
=
2
1
∫
cosec
(
4
π
+
2
x
)
d
x
=
2
1
2
ln
(
tan
(
8
π
+
4
x
)
)
+
c
=
2
ln
(
tan
(
8
π
+
4
x
)
)
+
c
⇒
k
=
2
Hence,
2
k
=
2