Q.
The value of the integral ∫−3π3π∣∣sin3x∣∣dx is equal to
1343
186
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
The period of the function ∣∣sin3x∣∣ is π, thus I=6∫0πsin3xdx⇒I=6∫0π43sinx−sin(3x)dx( As (sin(3x)=3sinx−4sin3x)) ⇒I=46∫0π(3sinx−sin(3x))dx ⇒I=23([−3cosx]0π+[3cos(3x)]0π) =23(3−(−3)+(3−1−31)) =23(6−32)=23×316=8