Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the function f(x)=1+x+∫ limits1x( ln 2 t+2 ln t) d t, where f prime(x) vanishes is:
Q. The value of the function
f
(
x
)
=
1
+
x
+
1
∫
x
(
ln
2
t
+
2
ln
t
)
d
t
, where
f
′
(
x
)
vanishes is:
292
169
Integrals
Report Error
A
e
−
1
B
0
C
2
e
−
1
D
1
+
2
e
−
1
Solution:
f
(
x
)
=
1
+
x
+
1
∫
x
(
ℓ
n
2
t
+
2
ℓ
n
t
)
d
t
Differentiate both sides w.r.t.
x
by using Leibinitz theorem
f
′
(
x
)
=
1
+
ℓ
n
2
x
+
2
ln
x
=
0
(
1
+
ℓ
n
x
)
2
=
0
∴
ℓ
n
x
=
−
1
∴
x
=
e
1