Let Δ=∣∣1aa31bb31cc3∣∣
Applying C2→C2−C1,C3→C3−C1 =∣∣1a3a30b−ab3−a30c−ac3−a3∣∣ =(b−a)(c−a) ×∣∣1aa301b2+ab+a201c2+ac+a2∣∣ =(b−a)(c−a)×[(c2+ac+a2)−(b2+ab+a2)] =(b−a)(c−a)[c2−b2+ac−ab] =(b−a)(c−a)(c−b)[c+b+a]
Note: The value of the determinant does not change either by any rows or by any columns operation.