Given expression =tan−12+tan−192+tan−1252+tan−1492+....
General term =(2n−1)22=4n2−4n+12=1+4n(n−1)2=1+2n(2n−2)2n−(2n−2) Tn=tan−12n−tan−1(2n−2) ∴ Sum of the series =tan−12−tan−10+tan−14−tan−12+tan−16−tan−14+…tan−12n−tan−1(2n−2) =tan−12n−tan−10=tan−12n