Given determinant ∣∣1cos(n−1)xsin(n+1)xacosnxsinnxa2cos(n+1)xsin(n+1)x∣∣=0 ⇒∣∣1+a2−2acosx00acosnxsinnxa2cos(n+1)xsin(n+1)x∣∣=0
By applying C1→C1+C3−2cosxC2
By expanding (1+a2−2acosx)[cosnxsin(n+1)x−sinnxcos(n+1)x]=0
Now, (1+a2−2acosx)sin(n+1−n)x=0 ⇒(1+a2−2acosx)sinx=0 sinx=0 or cosx=2a1+a2
As a =1∴(2a1+a2)>1 ⇒cosx>1 It is not possible. ∴sinx=0