Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the definite integral ∫ limits-∞ ln 3 e x dx equals [Note: y denotes fractional part of y.]
Q. The value of the definite integral
−
∞
∫
l
n
3
{
e
x
}
d
x
equals
[Note:
{
y
}
denotes fractional part of
y
.]
175
82
Integrals
Report Error
A
3
+
ln
2
−
2
ln
3
B
3
−
ln
3
C
2
ln
3
+
ln
2
D
1
Solution:
I
=
−
∞
∫
0
e
x
d
x
+
0
∫
l
n
2
(
e
x
−
1
)
d
x
+
l
n
2
∫
l
n
3
(
e
x
−
2
)
d
x
=
e
x
∣
−
∞
0
+
e
x
−
x
∣
0
l
n
2
+
e
x
−
2
x
∣
l
n
2
l
n
3
=
1
+
(
2
−
ln
2
)
−
1
+
(
3
−
2
ln
3
)
−
(
2
−
2
ln
2
)
=
2
−
ln
2
+
1
−
2
ln
3
+
2
ln
2
=
3
+
ln
2
−
2
ln
3