I=−1∫1(1+ex)(1+x2)dx ....(1) =−1∫11+e−xdx⋅1+x21(using King) I=−1∫1(1+ex)(1+x2)exdx....(2)
adding (1) and (2) 2I=−1∫1(1+ex)(1+x2)(1+ex)dx=−1∫1(1+x2)dx=20∫1(1+x2)dx I=0∫1(1+x2)dx=tan−1(1)=π/4
[convert it into value of definite integral ' T ' is same as ]