We have, tan−1(1+x2−1−x21+x2+1−x2)
Let x2=cos2θ. Then, we get
Given expression =tan−1(1+cos2θ−1−cos2θ1+cos2θ+1−cos2θ) =tan−1(2cosθ−2sinθ2cosθ+2sinθ) [∵1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ] =tan−1(cosθ−sinθcosθ+sinθ)
(divide numerator and denominator inside the bracket by cosθ ) =tan−1(1−tanθ1+tanθ) =tan−1(1−(tan4π)(tanθ)tan4π+tanθ)=tan−1[tan(4π+θ)] (∵tan(θ+ϕ)=1−tanθtanϕtanθ+tanϕ) =4π+θ=4π+21cos−1x2 (∵x2=cos2θ⇒θ=21cos−1x2)