We have, 87π=π−8π
and 85π=π−83π ⇒sin87π=sin(π−8π)
and sin85π=sin(π−83π) ⇒sin87π=sin8π and sin85π=sin83π ⇒sin4(87π)=sin4(8π)
and sin4(85π)=sin4(83π)
Now, sin4(8π)+sin4(83π)+sin4(85π)+sin4(87π) =sin4(8π)+sin4(83π)+sin4(83π)+sin4(8π) =2sin4(8π)+2sin4(83π) =2[(sin28π)2+(sin2(83π))2] =2[(21−cos2(8π))2+(21−cos2(83π))2] =2[4(1−cos4π)2+4(1−cos43π)2] =21[(1−21)2+(1+21)2] [∵cos4π=21andcos43π=2−1] =21[1+21−22+1+21+22] =21[2+22]=21[2+1]=23