Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of sec-1 ((1/4) ∑ limits10k = 0 sec((7π/12)+(kπ/2))sec((7π/12)+((k+1)π/2))) in the interval [-(π/4), (3π/4)] equals
Q. The value of
se
c
−
1
(
4
1
k
=
0
∑
10
sec
(
12
7
π
+
2
kπ
)
sec
(
12
7
π
+
2
(
k
+
1
)
π
)
)
in the interval
[
−
4
π
,
4
3
π
]
equals
1420
167
JEE Advanced
JEE Advanced 2019
Report Error
Answer:
0
Solution:
se
c
−
1
⎝
⎛
4
1
k
=
0
∑
10
cos
(
12
7
π
+
12
kπ
)
cos
(
12
7
π
+
2
(
k
+
1
)
π
)
1
⎠
⎞
=
se
c
−
1
⎝
⎛
4
1
k
=
0
∑
10
cos
(
12
7
π
+
2
kπ
)
.
cos
(
12
7
π
+
2
(
k
+
1
)
π
)
s
in
(
12
7
π
+
2
(
k
+
1
)
π
−
(
12
7
π
+
2
kπ
)
)
⎠
⎞
=
se
c
−
1
(
4
1
(
k
=
0
∑
10
t
an
(
12
7
π
+
(
k
+
1
)
2
π
)
−
t
an
(
12
7
π
+
2
kπ
)
)
)
=
se
c
−
1
(
4
1
(
t
an
(
2
11
π
+
12
7
π
)
−
t
an
(
12
7
π
)
)
)
=
se
c
−
1
(
4
1
(
−
co
t
12
7
π
−
t
an
12
7
π
)
)
=
se
c
−
1
(
4
1
(
−
s
in
12
7
π
cos
12
7
π
1
)
)
=
se
c
−
1
(
−
2
1
×
s
in
6
7
π
1
)
=
se
c
−
1
(
1
)
=
0.00